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SUMMARY

The method of Poggi i~ employedfor the determination
of the effi.cte of cornprwibility upon the $OW pd an
obstacle. A general mpreseion for the celocity increment
due to compressibility is obtained. This general reedt
holds whuteoerthe shape of the obstacle; but, in order to
obtain the complete solution, it is necessary to know a cer-
tain Fourier expansion of the quare of the wdocity of
$OWpast the obstacle. An application is mude to th6 case
of a eymtnetm”calJoukoudi projde un”tha 8har~ trailing
&e, jixed in a stream of velociiy ti at an arbitrary angle
of attack and with the cirmdutiondeterminedby the K&a
condition. l% results are obtained in a closedform and
are e.wetin~ofar ag the second approximation to & com-
pressible$OW is cancerned, thej%wt approximation being
the resultfor the correspondingincompreseib[e$ow. For-
mulas -for the lift and moment analogom to the Bhr.sius
formulas in in.compressib16jlow are deceloped amd are
applied to thin symmetrical Joukowski pro$l& for ~mall
angles of attack.

Since actual experimental datafor Joukowsh~ pro@es
are kzch~ng,the theoretical rewdts are applied to a ihin
and a thick profile al zero angle of attack, and the velocity
and pressure distributions are culculuted and compared
with thosefor the correspondingincornpressibk cases. The
critical valuesfor the ratio of the stream relocdy co to &
retocdy of sound in the 8tream CQ1 corresponding to the
attainment of the local relocity of sound c by the$uid on
the surface of the airfoils, are also obtaimd.

INTRODUCTION

When a compressible fluid streams past a fixed body
with a -relocity small enough so that nowhere in the
fluid is the local veIocity of sound exceeded, the flow
may be represented by a velocity potential. The effect
of compressibility is to distort the streandine picture
associated with the corresponding incompressible flow.
This diatartiort has been calculated by Janzen (refer-
ence 1) and RayIeigh (reference 2) for circular cylinders
and spheres and recently for elliptical cylinders by
Hooker (reference 3). The methods used by these
authors, however, me not feasible for the determination
of the flow about obstacks other than the simple ones
mentioned. On the other hand, a method introduced

JOUKOWSKI PROFILES

by Poggi (reference 4) may be used in determining the
flow about shams resemblkw airfoil mofiks.

The method- due to Pog~ is as ~ollows: When the
fluid is compressible, the equation of continuity maybe
written as ..

(1)

where the symboI 13/Dt denotes, as usuaI, the operator

3
. Omti~,the fluid veIocity components;&+v. ;+% q?

and p, the mriabIe density of the fluid.
This divergence VW introduce extra terms in the

expressions for the docity components, the divergence
at an element dxdy being equivalent to a sirnpIesource

1 Dp—— —

p ‘f dzdy Poggi thus repIaces the com-of strength ~ .

pressibIeflow by an incompressible flow due to a suitable
distribution of sources throughout the region of flow.

If the motion of the fluid is steady, then the equation
of continuity and Euler’s differential equations of ..—
motion become:

Assuming the pressure p to be a function of the density
p only and introducing the local veIocity of sound—

‘(=*) ?equations (2) yield the following:

(3)

If it is f@her assumed that the motion of the fluid is
irrotational, then

&l, a)= ~
ax aV–
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and a velocity potential @ may be introduced, where

34 a+
?)== —-? VW=——

ax w

The strength of the source at a point (z, y), given by
the expression on the righhhand side of equation (3),
then becomes

(
I a~w+tiw

)–G? 31FX ?@ij

Suppose now that (g, V)“md (z, y) are the rectangular
coordinates of pointe in the [ and z planes, respectively,
and furthermore that these two planes are conformably
related, that is

r=f(z)

where l=~+iq, z=x+iy. Let the ~ plane .IM the
plane of the profile and the z plane, the plane of the
circle into which the profile is mapped by the foregoing
conformrd transformation. It is well known that, at a
pair of corresponding points at which t and z possessno
singularities, a source at one such.point corresponds to

[

z plane

Q P

Fmcrm l.–hkws of a aimsb sourczwithremrdtoa drcla.

a source of equal strength at the other. It follows then
that at corresponding elements

where, in the expression on the right-lmnd side, d is the
velocity potential in the z plane while Dis the magnitude
of the velocity in. the f plane.

Iri”polar coordinates (r, 19)the strength of a’source at
an element WY of the z plane is

or, introducing a new variable h=: (where R is tlm

radius of the circle into which the profile is mapped), rmd

5+ 1.~$ this expression becomes
“=-W ‘a– r a6

(5).

With the source distribution known in the plnno of
the circle and given by equation (5), the induced t.an-
gentkl. velocity at the circular boundary may be cd-
culated.

Thus consider a unit source located at a point Q of
the z phrne. In the presence of a circuhir boundary of
radius R, the velocity induced at any point P external
tier on the boundary is given by

where S is the point inverse to Q in tho circk (See
fig. 1.) Since the normal velocity at the boundttry is
zero, the velocity there is wholly tangential aml is
given by

() 2X sin (e–a)
% ..=–R [1–2A Cos (6–6)+xq (G)

Hence, the total velocity induced at any point of the
circular boundary by the system of sourcm given by
equation (5) is

The justification for replacing c by co in equation (7) may be
shown in the following way. From the Euler equations of
motion {2] and the condition for irrotational motion, it follows
that

; dt#+:dp=O

Then when adiabatio conditions prevail EO that the relation
between p and p fs

()p=po E 7
PO

it follows by integration that

‘=’’[’+=(’-5)51
where the zero subscripts denote the corresponding magnitudc$
in the undisturbed stream. From the foregoing equation it is
seen that c has a maximum value at the stagnation point where
u=O, that is
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Furthermore, as the streamline corresponding to the boundary
of the obstacIe is traversed, a point is reached where, for a detiite
vahze of the ratio u~~, the velocity of the fluid equals that of
the local vekwity of sound. This criticsl velocity is obtained
from equation (8) by putting C=U and salving for u Thus

2
V.r{?=-l c?

(
T–l@——

*+24 )
(9)

For exarnple, Iet rJq=O.75. Then with 7= 1.40S (for air)

cn.==L056 co
and

cw{x=tIc,ii=O.062 Q

Away from the obstacle, v approaches Q and c approach- G
Thus it b seen that the variation of the local vslocity of stmnd
from G is, in genera~ small enough to permit repbicfng c by G,
at Ieast to a W approximation.

Equation (7) is a functional equation for the fluid
velocity v and may be solved by a method of succes-
sive substitutions. The procedure, due to Poggi, is to
substitute for o,, L’g,and # values pertaining to the
corresponding incompressible flow and thus obtain a
tit approximation to the sinJi-source distribution in
the plane of the circle. The method thus considers
the incompressible flow to be the fkst appro.xinmtion
to the comprwsible flow. The second approximation
is then obtained by superposing on the incompressible
flow the effect of the sink-source distribution as gken
by equation (7); that is

VCO~P=U,XC.~D+AU (lo)

GENERAL DEVELOP51EXTS

Before equation (7) is appbd to any particular case,
it is expedient to consider it first in a generaI way.
Thus, suppose that I? can be developed in a Fourier
serks so that

d
~l=&O+iJ(~R cog ~e+~.fi @ (11)

where the a=, b, are functions of X and also contain the
parametem of the shape.

Then

where the primes denote differentiation with regard
to k. Expressions for a, and n are obtained from the
compk potent,ial of the flow past a circular cylinder
of radius l?, w-ith the circulation determined by the
Kutt a condition. Let the stream of velocity O.make
an angle a with the negative direction of the z 6.

Then the potential is

‘=oo’’a+2)+@@’”-e-fa’ ‘“g:
md

(12)

Then

ur=—Zl)(l-A~ Cos (e+a)=va(cl Cosd+q sin 8)

md

tl=ll)(l+kq Sin (@+ LY)+zbh SinCl

(
=C :+dl CosO+(izsill e

)

where

C,=–(1–V) Cos
CS=(l-V) sin a

Ko=2h @ ~
2
d,=(l+kk) sin a
dz= (1+ hz) COSa

Therefore

a

orl$’=~ %Sao’(clcos @i-casin 9)

+~~,{a.’cl[cos (n–l)19+cos (n+ 1)6]

+b.’c,[ain (n+l)e+ain (n–1)8]
+am’c@n (n+l)d–sin (72-1)8]
+b:c,[cos (n–l)e–cos (n+l)f?]}

and

t’fl 3$
– —=–~-ln{adil[sin (n+l)~+sin (n–1)8]ha8

–bd,[cos (n–l)d+cos (n+l)e]
+a~,[cos (n–1)8–cos (n+ 1)8]
–bnd,[sin (n+l)O–ain (n–l)f?]

+a,do sin n&bdo cos m?}

The folIowing definite integrals dl be found usefuI in
evaluating equation (7):

Then substituting the foregoing expressions for u,:X

and ~ ~Finto equation (7) and integrating with re-

gmd to 6, it follows, after replacing the derivatives - .
an’, b,’ by a., b, by means of partial integrations, that
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8

*~=4%-’ [ – (aQ)k.Osin (5+cz) – (a& sin (d–a)

J
+ (h)~.o cog (~–~) –n&n Cos(ti+a) “’huh

J
+~~n cos (n8–a) l~n-’b.+,dk

o

-c9,

c
—

1“”z, z ‘ p lanes

(13)

~ plane, and the circle of radius R with center at tho
origin O of the z plane. into a Joukowski profile with a
sharp trailing edge in the f plane. (Seo fig. 2.) The
distsnce 00’ is denoted by ae and eis therefore &measure
of the thickness of the profile. Since the profilo has a
sharp trailing edge, the two circles touch at the cor-
responding point (—a, O). The relation between the
2, # plnnes is

Z’=ea+z

If w denotes the complex potential of the incompres-
sible flow in the ~ plane, then the complex velocity is
giVOIl by

where..

-,!.

J

o “xx’+

.“

-—

dw dw dz dz’
z’zn~

$ plone

I
FIGURE 2.-TrnrM-t[on of e symmetrkal Joukowdd profile Into a c[rculeu contour.

It is to be especially noted that this expression for AV
k perfectly generaI and independent of the type of pro-
file considered. All that is required for a complete
solution of equation (13) is a knowledge of the Fourier
development for 02/v/.

APPLICATION TO SYMMETRICAL JOUKOWSKI
PROFILES

Suppose now thut the boundary in the ~ plane is a
symmetrical Joukowski profile with a sharp trailing
edge. The Joukowski transformation given by

+-2’+; (14)

maps the circle of radius a with center at the origin O’ of
the z’ plane into the line segment (–2a, O; 2a, O) in the

According to equation (12)

Hence
du) (z+R) (ze’~-Re-ia)z’3
q=% d(z’+fz)(z’-a)

But
z’+a=z+a(l+e)=z+l? -

z’-a=z-a(l-e)

Therefore
dw (z+ W)’(ze(=–Re-{a)
a-o” d[z–a(l–e)]
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Introducing

~Ruz a(l —~)=–, –=h, and -=krR

it follows that

ABOUT SYMMETRICAL JOUKOWSKI PROFILES

Id

t+

,(1+27Lx cos 6+h’N)’[1–2X cos (8+2a)+A’J
‘=d~ ‘Q 1—211ACose+k%~

It is now required to obtain the Fourier series for
&/z#. Thus, making use of the following dedopments:

sin e
l—2kh cosO+k%z=~{k})’-’ sin no

COS$—kl
1—2kh COSe+k%z

=~,(kh)m-’ cos 7M

1
+

1

I—2kh COSe+k%%~=l-hak 1
l+25(kA)= Cosne

Y1-1

it follows that

Reducing this e.spression to the form of a Fourier
series, it-turns ou~ that, for n> 2

ax=2k”-3 (h+k)*(l +MP)*A’

[

Cos ~a+k(l+x~)–2 Cos 2CC
I—PA* 1

b,=2k”-s(h+k)*(l +hkAq’A” sin 2a

(15)

For later use it will be con~enient to introduce the
foIIowing notation for n> O:

a=l= 2k’-~(h+k) 2(1+hkk~ %“ COS2a
1

(17)

~= 1+(1–2k Cos2a) u
l— )&W

E=2LsiI12LY

~=2(k–cos 2a) +2ii(1-k COS2a)hz
Z(1— k%’)

[tisseen that

(G)M=2 and (cIA-o= (UA4=0

Equation (13) then becomes

4
AD= ‘Os

% s–2 ein(L3+cY}+2Cos (d–a) jl-%,)dh

J
+4 COS(213-c4 lA(b,–~,)dk

o

–2 Cos (ti+a)’~(bl-~l)dk

–4 Cos (26+ ~)c-&,-7,)dk

–4 Cos (2$3+C2)
J

‘k’(b,–~,)d~
o

J
–6 COS(3d+a) &b,-~&ih

J
+2 Cos (6+ a) O%dk

+2 a (6+a)J:(a,–WA

J
+4 sin (2~+cY) ~k(a,–;,)dk

s–2 sin (ti-cc) ~(al–;~dk

f
–4 sin (23–a)l ~l~(a,–~,)d~

●

s
+2 sin (6+ a) ~A(ao–;o)dh

J
+4 sin (26+C2) :X’(a,–;,)dk

J
+6 Sin (313+cz) :~a(~–=,)dk

+2 (!0s (a–a)
J

;+ (b2–T,)dh

J
–2 sin (d—a) O1; (%–=2]dA

J
–32n Cos (ti+a) :(VG_,+ A-’T=)dh

m=I

J
+52n COS(n&c2) o’(k~’~~,+h’-’)dkdk

X=1

J
+52?2 Sin(ti+a) *(k”z*,+ A=-’;x)dh

a-l o

J
–~ 2n sin (rib-a) ,’(Y’Z.+,+ v%)dq

201
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where

so—ad=#{ (h+k)’(cos 2cl-ii) +P+[lc(h’+k2)

—k(l+h~)(h+k)~+ 2hk(h+k)2 ~~ 2a

+2WP cog za]k’+[–h%(h+~)’

+h4k+h’kW+k)2 Cos2a]A4}

al—al= 2? y ~’h(h+2k) +2A%A’]

cj)h2

&—; z=T AZCos2a

b1–71=– 2A $ 2a [h(h+2k) +2h’kF]

bz–~a= –~h’ sin 2a

bo=~ (h+k)2(i+M~2)2 sin 2ti

(19)

It is a great simplification to rephtce Z. by a.I +U.z in
the ktst two integrals of equation (18) before perform-
ing the integrations. Then

J–’&t COS(ti+a) :(k’~n-l+A’-%=)dh
I

J+~2n sin (M+ a) ‘(k”an+,’+ ~-’a.’)d~
n-l o

=(1 +k) (h+k)’&4nkB-4 sin (n/i-a)
n-l

f. ,1(1+hkx’)%’’-’(i~
and

AISO

=– (l+k) (h+k)2R$#k’+ sin (ti-h)

J
‘(1 +hkN)2W-’d~

o I

J
A2n sin (ml+a) ‘(h”G-/+ k’-’a)dhdh
n-l o

=– (1+k) (h+k)2~nk’-’ sin (M+cc)

J
‘(1 +hk12)2N’-’dX

o

+(1–2kcos 2a+k2)(l+k)(h+k)’

~4nkM-6 sin (~+ ~)sl(l+hk~2)2k2K~l
l—k%2 dh

22-1 0

(21il)

= – (l+k) (h+k)~~nkw’ sin (M–cc)

s:(1 +hkU)’h2n-’dA (21b)

.-+(l–2k cm 2a+N) (l+k) (h+k)’ I
Jf#&_’ sin (n~–a) ‘(1 ‘f~~-d~

o I
Consider.now the integrals

Let s=.kh2. Then

-eU(l+he-~)2+2h(l +)ie-f~) log (1—keu)
1

Hence

1
++ sin (3–B) log (1–2k cos d+k’) –k sin B

[

.
–h* k sin (6– p) + cos (26–P) Ltin-ll=j

1
+;sin (26–P) log (1–2k COS6+&) –~~ SiElB

Replacing 13by a, -a, or –3a, the corresponding intcgrrds
in equations (2o) and (21) me obtained.
t.?onsiderfinally the integrrds

ml

Ilen
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Again let s=kh2. Then

(l–kefa)

Therefore

log (1–2k C!OS6+k2)

#+W (1–M ~ 8 log (1–l?)
2k (1–zk COS”6+k$)’

+h (fik-1) sin ($-h SiIl2ii
z ~–~k Cos~+~ log (1–.-2k cos 6+F)

+h (hk-1) COSa+k–h COS2~~m_, k sin 6
~ l–2k Cos(l+h~ l—k COS 6

tan-l
ksiul$

l–k COS6

L+k (1–2hk–h$) Sillii+h sin 26——
4 (1–2k Cosa+ P)’

log (1–2k COS.3+&~

+Ji (1–h’) aina
3 l—x Cos 13+P

From equations (18), (19)1 and (20) and the integraIs
J,, I,, and I*, it foIIows that

[[

(9+5h~(h+k)’ 3h’ 5 h’ 2h(h+2k)LU/L1_3— =.
‘2’0 4 1

–~+~~– ~

[
; (3+3hk+y~(h+k)’+ysin (b+a)+ –

2h(h+2k)
+ p ] Sk (a+3a)–:; a (Za+a)

10h’ 2h(h+2k)
+[~ ~+– p

1
SiIl (2ti+3a) +2:sin (36+3a)

+$ sin (a–a) +*(l+k~:~+%,(_a)

4(l+k) (h+lc)’J2(_3a) _4(l+@:h+k)’J,(a)
–~

4(l+k)’(h+k)’
+/p (1–2k COS2cz+k9 1, .&@

4(1–k&) (h+k)’
+ jp 1

(1–2k cos za+h~ 1, COSa (22)

where Jz (— a), for examplej means that in the expres-
sion for J3 (I3), —a has been substituted for j9; and

()Q 2.p= – There is no difEcuI@ in evaluating AV/UOfor
co

any value of h except h=O. For h=O, k= 1, however,
the Joukowski profle degeneratea into a line segment
and

h~=p sinI SiIl (~+a)+sin a
COS(~+2a) +2 sill a

1—COS 6

2 sing a
–1_=os610g 2(1–COS 8)– :_~sa6~;] ~23)

The Iast term in this expression contains the divergent

series as $ which approaches intinity like Lim Iog n.

This inhite term shows that streamline %ow~&not be
maintained about a straight-Iine profle except for the
trivial case of zero angIe of attack.

CORRECTION FOR THE CIRCULATION

It is noted that the expression for the complex
velocity about the circuIar protie given by equation
(12) was obtained with the circulation fixed by the
Kutta condition. When AV, representing the effect of
compressibility, is added to the incompressible velocity
obtained from equation (12) ta yield the compressible
velocity, the Kutta condition no longer holds. In order
to restore the Kutta condition, an additiomd circulation
AI’ is added to the incompreasible one. Thus, the
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veIocity at the boundary of the circular profile is given
by

170+AI’ AU
:=2 Sin (a+a)+m+~ (24)

where I’O+AI’= I’ and I?O=4WRV0sin a, the circulation
in the incomprwsible flow. The Kutta condition, i. e.,

(-)
v~

=0, thus serves to evaluate AI’. For ~=~ the
Vo 8=X

expressions for Jz(fl), 11, and 1, simpIify considerably.
Thus

&72(@)&= —[~=h,o,,l+k)-kl

+h’[k–~k’ –log (l+k)]] sin/9

(&=gIog (1+k) ++Iog (1–k) –:

(~2)d.w=0

The relation between the velocities in the plane of the
circle and the plane of the profile is given by

dw dw dz dz’=
X7-

It fo~ows tlmt on the prof?dewhere A=l

up 1+2h Cos6_+h2 v~—=
~1–2k COS6+?~

(25)

where Vpis the velocity on the protile corresponding to
v, on the circle.

When the profle is assumed to be thin so that only
the first power of h is retained and the angle of attack is
small so that cos a~l and sin -a, then the Kutta

Ar
condition leads to the following ~~pressionfor —!2rRq

AF
2-

=p(l+h)cc (26)

It then follows that

g=l+~p (27)

This value for the ratio I’/I’O corroborates G1auert’s
result (reference 6)

rl
Fo=~

-I+;p+ . . .

when the profile is very thin, i. e., when h is negligible
in comparison with unity.

Since the rigorous expressio~..are avaiIable, it may
be interesting to compare the approximate result

given by equation (26) with the c.xact result obtained
from equation (22). Thus, for a very thin profilo

( )
defined by ~=0.01 h=~! k=% and for tho more

(
conventional profiles defined by E=o.05 h=& k=$

)

(
1 9

)a“nd6=0”10 ‘=n’ ‘=ii ‘ at ‘gles ‘f ‘ttack a=loO

and a=5°, the folIowing table presents the resdts:

@j:$: $: ,$:

It is to be noticed that for a= 10° the oxuc~cvuluation
of AI’/27rR’byields a greater wduc for c=O.01 than for
e= 0.05j-a fact not given by the approximate equntiwl
(26). This reversal appeam, in general, for larger values
of e as.the angle of attack increases; e. g., for f= 0.05
at a=20°. This feature of the exact oxprcssion for the
additional lift- has no practical significancoj howevcrt
insofm as the lift is concmnecl, since tho approprinto
combination of e and a showing this reveranl is outside
the prac@al range,

In the calculation of the local velocities md prcssurw
on the surface of the airfoil, the rigorous mprmsions for
Av/ti are to be used. The rigorous derivation, however,
of the total integrated lift and moment ou tho airfoii
involves great mathematical difficulties. A simplified
form for Au/vomay, howeva, bo obtained for a thin
Joukowski profile at small angles of attaclc. Its uso in
integrating for the lift yields, as will be shown lfitw,
the expected result that

Lift =Po%r

Where r=r’o+w

This redt justifies the use of tlm simplified fornl of
AV/Voin calculating the lift, but its use in intcgmting
for the moment, rdthough reasonable, is somewhat
uncertain.

If, then, only the fimt power of h is retained and the
ungle of attack taken small enough so that cos asl nnd
sin a=cc, it follows from equation (22) that

AU
~=p{[cos a+~(4+8 cosa+3 Cosm}]a+h(sina-t-sin 28)}

The expression for ~Jti, replacing AT/2rR~ by tho
value given by equation (26), then becomes:

%=2 sin fi+2cY(l+cos 6)

+/.4[(l+cos 8)cY+h(5+8 Cos8+3 CosZa)a
+h(sin ti+sin 2d)] (28)
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CALCULATION OF THE PRESSURE AND LIFT ON THE
AIRFOIL

According to equation (8)

‘=’’[’+=(’-$)$l
Then from the adiabatic equation of state

‘().p=p1 ‘
h

and the definition of the local ~elocity of sound c

(29)

Expanding the right-hand side of the foregoirg equa-

tion according to povrem of $ (=P) it follows that

The pressure distribution may be calculated by means
of equation (29) togethervd.h the vahws for u/oOobtained
from equations (22), (24), and (25). Equation (30)
wiU be used in obtaining the total M and moment on
the airfoil.

Since the profle is a stretie, the normal velocity
–?l@/Zm=O and, accordingly, if .s denotes the Iength
sIong it, then Bernoulli’s equation maybe written

2+++’)(W+W3+--“‘p=constant– 1

Let n denote the inward-drawn normal to the con-
tour. Then from figure 2, it is seen that p cos (&n)
and p cos (q,n) are the components of the pressurealong
the Eand T axes, mpectively. Accordingly, the force
on the airfoiI is given by

—i Cos (q,n)]ds

where the profile C is traversed in the counterclockwise
positive sense. On the other hand

(&=(h (!0S (~j?t),dq=di COS[T– ($,7L)]=-(ISCOS(Ej?l’)

and therefore

‘=$-0+9!ji(w=’”
‘ip’jl$( )?@‘

—lipc2ii (d$-idq)

205 ._

NTOW,by definition,

md, since the velocity normal to the profi equals zero,
it follows that

17herefore
dw_ Zh#d.+idq
i&TT

But
&=&+dq’= (d~+idq) (dHdq)

Dr

and

Therefore

Referring to the plane of @e circle of radius R

(31)

(32)

where Z=e” and 3 is the polar angle of the circle of
radius R.

Since by definition

dw
~=l?(-fl=+io,)

it folIovm from equation (28) that

( )
~=iR~~-~=RUC alz+a,+a~+~+~ (33)

where

a’ ‘(l+%)+’”(’+~+a’)

hP 3 .hW
al =3 +21

a-l=ia(2 + p+5hp)

(z-,=-(l~)+ia(l+~+4h,)

~_a_ hP ~3tipa
22

..J . .--—

.-
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Also from the Joukowski transformation

j.= ~f+$~

and the relation

Z’=l?(z+h)

it follows that

‘=*1

Then making use of the weMnown rekdions

‘$z“dz.=O; if m#–1

and

$dz
——27ri; if m=—1~z

it turns out, neglecting as usual terms containing powers
of ~, h, and a higher than the first, that

‘--’~r(’++”)
or

‘q=’’r(’+w
This last expressionshows that, when the angle of attack
is assumed $mallenough so that only the first power of a.
is retained, the component Pi of the Iift vanishes in
comparison with the component PV.
Thus

Lift= pV=~or (34)

This expression agrees in form with the corresponding

one in incompressible flow Ttith the auxiliary definition

‘=’’(1+%9
~ e. g., equafion (27).

CALCULATION OF THE MOMENT

The moment arm OQ=m sin (a–p) and the force per
unit length along the airfoil is pds (fig. 2). Hence the
total moment about the origin Ois given by

—m Cosu sinp)da

But
d~=ds cos u and dq= –d~ sin a

Hence

M=
!$

p(m cos pd(+m sinpdq)
c

Now
&Hvd=R+’Jd?

and since d~=~

(d~+qdV=R.P.&

Substituting for the pressure p the expression

it follows that

Refeiring to the plane of the circle of radius R

(3G)

Performing the integrations in a manner analogous to
that for the lift, it turns out that

“=4”@~’”E-h+(l+:’’)”l-’@a’’a’2+Gh)
or

M=4m&u2
<

&h+~P
)

(37)

This expression reprwmti tho moment nbout the origin
of coordinates, and the moment about tho center of the
circle of radius R (into which the profllo is mapped) can
be obt8ined at once as

l+7h
Mc=hl-Lac=4rpov/a2a+ 4xfiv?aza~p

or

‘( l+7h
M,=i14 1+~#f

)
(38]

where Mo=4rpOvOza’ais the moment about tlm center
of the circle of radius R for the corresponding incom-
pressible flow.

If now d represents the distance of the center of
pressure from the origin of coordinates, then

M=u
or
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This expression shows that the airfoil has a constant incompressible case, is nearer to the leading edge by
center of pressure at a distance equaI to 1/4 (1—3hp) of about 2.5 percent of the chord.
the chord from the leading edge. For a M tiofl, LAXGLEr MEMORMLAmommrc.kL LabOratOry,
say e=O.05 and for a stream velocity vO=O.835 cO,the LTATIONAL&nwsoRY COMMITTEEFOEAERONA~CS,
center of preseure, as compared with the corresponding LANGLEYFIELD,YA., A’orember 19, 1937.



APPENDIX A

.

APPLICATION OF THE THEORETICAL RESULTS

As an example of the application of the theory to any
particular case, the flows past a thin and a fairly thick
symmetrical Joukowski profile for zero angle of attack
will be cahmlated. Since no experimental rmdts are
available for purposes of comparison, it was considered
hardly worth while to perform the rather lengthy and
tedious calculations associated with angle of attack or
circulation.

/.4

L?

1.0

.8

$ “;
. .

*=.

<

s
.2

4
0

-.2

-.4

-.6

-. 8

0 20 40 a 80 /m la 140 m 1617
6, deg.

FrWJBE 3.—Presrue and veIocfty dfstrfbutfon for the aymmetrfcal Jonkomk[ alrfoll
SeOt@ 8=0.05. *=0.70,a-(f.

Equation (28) for Av/vOsimplifies considerably when
the angle of attack a is taken to be zero. Thus

[

h je h(12–21h–4h2+30hS–24h4 –8hb) ~ ~—=—
W4

4h(l–h)~
+ k2 Sin 2*:~ sin 38

1
32h’(;–h)a &(0)+-1, (40)
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where

J,(o) = (l+2h) (1–4h9 (1–h)’ sin 6
2 1—2k COS~+kt

–: (sin fi+h SiIl26) log (1–2k COS~+ki)

$-=.
i
&

I 1- 1#- 1 1 1 I I 1 1 f

do f5a80 ml 120 A

I I \l I A- 1 I I
-. 81 I L.4.-L!1 I

.—
1“{”1

0 20 .- -- .- 40 /60 J80”
~.*.

FIGURE 4.-Piwxrm and vebdty dfatzfbutlonsfw the SYmrnctdcd Joukowk[ aIrfoll
Wotion6=0.1s.P-O.47,a-o”.

The profiles chos~n are defined by e= 0.05 and e= 0.15
or h=l/21, k=19/21; and h=3/23, k=17/23, respect-

ively. Tables I and 11 present the calculations and
figures 3 and 4 show the velocity and pressure distri-
butions for both incompressible and compressible flow.
The values of A chosen were the critical wduos ob-
tained by plotting (@&,c against ~h and then nothg
the intersection of this graph with that of (u/uO)6,il
against vO)%as given by equation (9). Trdh 111

-.
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presents the data and figure 5 shows the corresponding
grapha.

The expressions for Av/rOare given by:

7 \

\
6 I

! -

:5 \
_E

<

E
$4 \

_.
0

*

&

53
\,

N Z.&/~ =
2 1t-= .685 ,:835

.Cp’ -’,-.15 I 1 u
4 I I

I i t I
‘o

1
.2 .4 -6 .8 Lo

%/G
FIGUEE 5.—LLRd@ VEIW ~ @X at _ *@e & stu rw ,-o& ~d ~O.Sfi

for =0.05
An
~=p[O.05S90 ain6+0.05276 sin26+0.00125 ain36

– 0.02585JJO) + 0.00246L]

and
for e=O.15

Av
~= P~O.24905ain~+0.18053 ain26+0.01151 SiU36

–0.40568JJO) +0.105831~

It is to be noted in tables I, II, and IH that the maxi-
mum velocity op/u for the incompr&ble flow occurs
at about 6=35° and 6=45° for e=o.05 and c=o.15,

E=.15
~ ./

$0

<
Q-<f

o .f .2 .3 .4 .5 .6 .7 .8 .9 LO
.f/&ord

.I 6=.05
y
~o — -

$_J I
o J .2 .3..#.5.6.7 .8.9 l-O

t/tid

FIGUEE 6.–Symmetri@J Jcukcmskl prodks 0=0.05 end c=O.15.

respectiwly. It is then assumed that the position of
maximum velocity is independent of p and maximum
values for z@O are cfdculated for various values of w
These ~alues of (VP/~).=5 are given in tabIe III and am
used in obtaining the critical vaha of ~ as shown in
&re 5. The coordinates of the airfoils e= O.05, e=O.15
are given in table N and the corresponding contours
in figure 6.



APPENDIX B

NOTATION

z, y, rectangtdar coordinates in the plane of the
circle.

& T, rectangular coordiuatea in the plane of the
profde.

Z=x+iy, r=t+i~
r, e, pIane polar coordinates in the z plane.
v=,Vp, fluid velocity components aIong the z and y

axes, respectively.
ve, tangential velocity on the circle.
Vp, tangential velocity on the profile correspond-

ing to VG.

V= ~V~’+VU%,ma~itude of the fluid velocity.
c, local velocity of sound in the fluid.

PI density of the fluid.
P? static pressure in the fluid.
Vo,h, PO,Po, correqonding magnitudes in the undis-

turbed stream.

()

a
P= :

Av, correction term to the velocity in incompres-
sible ffow due ta compressibility.

4, velocity potential of the incompressible flow.
??+Vf= —~ component of velocity along the radiusvector.

1 a+
Ve= —7 ~~ component of velocity perpendicdar to the

radius vector in the sense of e increasing.

k=:

R, radius of circle into which the profile is
mapped.

7) ratio of specific heats.
w, complex potential of the incompressible flow

in the ~ plane.
a, angle of attack.

~1~

q thickness coefficient of Joukowski profile (see
fig. 2).

h=~1+-e

~_l–e
.–~l–2h

r, – circulation about-profile in the compressible
fluid.

ro, circulation about profile in tho inconlprcs-
sible fluid.

Al?= r— 170,contribution to the circulation due to com-
pressibility.

F, force vector on the airfoil.—
P~, P,, components of I’ along the & and v nxcsj

respectively.

M, moment about origin of coordinates in the
plane of compressible flow.

Me, moment about centm of circIe of radius R
in the phme of compressible flow.

Mo, moment corresponding to M, in the plane of
incompressible flow.

REFERENCES

1. Janzen, O.: Beitrag zu einer Theorje der stationary Strd-

2,

3

4.

5.

mung kompreeaibler ??haigkeiten. Phys. Zeitschr., 14 Jahr.,
s. 63%843, 1913.

Lcmd Fkyleigh: On the Flow of Compressible Fluid Prwt an
Obstacle. PhiL Mag,, ser. 6, VOL 32, no. 187, July 1916,
pp. 1-8.

Hooker, S. G.: The Two-Dimensional Flow of Cotnpreaeible
Fluids at SutWonio Speeds Pa~t Elliptio Cylinders. R. &M.
No. 1684, British A. R. C., 193I3.

Poggi, Lorenzo: Campo di velocit4 in una corrente plana di
fluido compressible. Parte 11.—Caao dei profili ottenuti eon
rappreeentazione conforme dal cerchio ad in psrticolare dei
profili Joukowski. L’Aerotecnica, vol. XIV, fssc, 5, 1034,
pp. 532-549.

Glauert, H.: The Effect of Compreaaibility on the Lift of an
AerofoiI. Proo. Roy. Soo., A, VOL 118, p. 113, 1928 (alzo,
R. & M. No. 1135, British A. R. C., 1928).



COMPRESSIBLE FLOW’ ABOUT SYMMETRICAL JOUKOWSKI PROFILES 211

TABLE I

Case 1: .=0.05, h=~, k=~r ct=O

11
LM
;GJ1(0)

~?
ra (-in-
mm-

.%Ej

LMUI
. 76i6

l%%
1. m
L H97
L HX
L IIM
L0%3
LOS%
LM79
L MU
L@3’1
L 01?6
LOik31
. WE
.SzEti
.9657
N&

.K2’

(d$.) acm
4575
2.816
L8i0
L 674
L 366
L 2H
LOYl

0-0
.2
.4
.6
.6
.7

d

Iumm-
?rwiibk

I

0

4
u
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00

u
1%
110
Ul
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1s0
100
170
Ml

COORDINATES OF TEE AIRFOILS

Z-O.M4-0.05

C&J & &

—

Case 2: c= O.15, h=&, k=%, a=O
La LO

L&)

0

1!
16

H
49
60
60
70
a

1%
110
la)
123
149
MO
160
HO
m
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